1 to 5 of 5 Results
Dec 18, 2023
Zhu, Shien; Huai, Shuo; Xiong, Guochu; Liu, Weichen, 2023, "Replication Data for: iMAT: Energy-Efficient In-Memory Acceleration of Ternary Neural Networks With Sparse Dot Product", https://doi.org/10.21979/N9/B4SIIN, DR-NTU (Data), V1, UNF:6:KboaxJ9ZX4FgcAqcXn8SqQ== [fileUNF]
This dataset contains the simulation environment, simulation results, and post-processing data for the iMAT paper published in ISLPED 2023. |
Dec 14, 2023
Zhu, Shien; Duong, H. K. Luan; Chen, Hui; Di, Liu; Liu, Weichen, 2023, "Replication Data for: FAT: An In-Memory Accelerator with Fast Addition for Ternary Weight Neural Networks", https://doi.org/10.21979/N9/DYKUPV, DR-NTU (Data), V1, UNF:6:UCCl9ySs+IN5trVkl2AGQQ== [fileUNF]
This dataset contains the codes, figures, and tables for the TCAD 2022 paper: FAT: An In-Memory Accelerator with Fast Addition for Ternary Weight Neural Networks. |
May 12, 2022
Zhu, Shien; Li, Shiqing; Liu, Weichen, 2022, "Replication Data for: iMAD: An In-Memory Accelerator for AdderNet with Efficient 8-bit Addition and Subtraction Operations", https://doi.org/10.21979/N9/JNFW9P, DR-NTU (Data), V2, UNF:6:L3+xW/BxBE6fYNWBm4ta6Q== [fileUNF]
The simulation code, experiment results, and graphs used in the GLSVLSI 2022 paper: iMAD: An In-Memory Accelerator for AdderNet with Efficient 8-bit Addition and Subtraction Operations |
May 10, 2022
Zhu, Shien; Duong, H. K. Luan; Liu, Weichen, 2022, "Replication Data for: TAB: Unified and Optimized Ternary, Binary and Mixed-Precision Neural Network Inference on the Edge", https://doi.org/10.21979/N9/RZ75BY, DR-NTU (Data), V1, UNF:6:Md7is6scgmHZ4O3PtUuAOg== [fileUNF]
The TAB experiment code running on ARM CPU, x86 CPU, and Nvidia GPU. |
Dec 21, 2020
Zhu, Shien; Duong, H. K. Luan; Liu, Weichen, 2020, "Replication Data for: XOR-Net: An Efficient Computation Pipeline for Binary Neural Network Inference on Edge Devices", https://doi.org/10.21979/N9/XEH3D1, DR-NTU (Data), V1, UNF:6:5DOBB66c624HMnkRD7Qw9g== [fileUNF]
Accepted as a conference paper by IEEE International Conference on Parallel and Distributed Systems (ICPADS) 2020. |