1,011 to 1,020 of 1,021 Results
Python Source Code - 6.8 KB -
MD5: 84507eaff9691c96a6a3806dd803924c
|
Python Source Code - 3.9 KB -
MD5: 9bdf5811eb5fcccc8c14c8edcdfd3bed
|
Python Source Code - 2.4 KB -
MD5: e03fa18983a2524a824b73f8f4660dda
|
Python Source Code - 2.7 KB -
MD5: d291dc48bd5a253a62e123af35e3dbc6
|
Tabular Data - 172.0 KB - 1 Variables, 5503 Observations - UNF:6:+jmG0vdNb5kvT4IJ3OJAeA==
|
Dec 21, 2020 - Zhu Shien
Zhu, Shien; Duong, H. K. Luan; Liu, Weichen, 2020, "Replication Data for: XOR-Net: An Efficient Computation Pipeline for Binary Neural Network Inference on Edge Devices", https://doi.org/10.21979/N9/XEH3D1, DR-NTU (Data), V1, UNF:6:5DOBB66c624HMnkRD7Qw9g== [fileUNF]
Accepted as a conference paper by IEEE International Conference on Parallel and Distributed Systems (ICPADS) 2020. |
Dec 21, 2020 -
Replication Data for: XOR-Net: An Efficient Computation Pipeline for Binary Neural Network Inference on Edge Devices
ZIP Archive - 1.2 GB -
MD5: ce4fc478984c26ed80a6c83abfb1bd8c
The_GAP8_SDK that contains the compiler and source codes |
Dec 21, 2020 -
Replication Data for: XOR-Net: An Efficient Computation Pipeline for Binary Neural Network Inference on Edge Devices
ZIP Archive - 2.0 MB -
MD5: 851043007b84fd2c2599ebd2485c71e1
The latex folder of the paper |
Dec 21, 2020 -
Replication Data for: XOR-Net: An Efficient Computation Pipeline for Binary Neural Network Inference on Edge Devices
Adobe PDF - 2.3 MB -
MD5: 4a934600b747084740524d91df1c1909
The PPT for the conference |
Dec 21, 2020 -
Replication Data for: XOR-Net: An Efficient Computation Pipeline for Binary Neural Network Inference on Edge Devices
Tabular Data - 19.2 KB - 17 Variables, 149 Observations - UNF:6:VrCPbjap40q9aQlCjvdQBA==
The performance of XOR-Net and competing methods. |
