S-Lab for Advanced Intelligence, established in 2020, is a university laboratory at NTU focusing on research and development of cutting-edge AI technologies in computer vision, natural language processing, reinforcement learning, deep learning, and distributed computing. We aim to create impactful applications spanning various strategic areas in partnership with academic, industry, and government organizations.
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Advanced Search

1 to 10 of 45 Results
Mar 10, 2025
Yang, Peiqing; Zhou, Shangchen; Zhao, Jixin; Tao, Qingyi; Loy, Chen Change, 2025, "MatAnyone: Stable Video Matting with Consistent Memory Propagation", https://doi.org/10.21979/N9/EN6LQI, DR-NTU (Data), V1
Auxiliary-free human video matting methods, which rely solely on input frames, often struggle with complex or ambiguous backgrounds. To tackle this, we propose MatAnyone, a practical framework designed for target-assigned video matting. Specifically, building on a memory-based fr...
Mar 10, 2025
Luo, Yihang; Zhou, Shangchen; Lan, Yushi; Pan, Xingang; Loy, Chen Change, 2025, "3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement", https://doi.org/10.21979/N9/3ARCLF, DR-NTU (Data), V1
Despite advances in neural rendering, due to the scarcity of high-quality 3D datasets and the inherent limitations of multi-view diffusion models, view synthesis and 3D model generation are restricted to low resolutions with suboptimal multi-view consistency. In this study, we pr...
Mar 10, 2025
Chen, Zhaoxi; Tang, Jiaxiang; Dong, Yuhao; Cao, Ziang; Hong, Fangzhou; Lan, Yushi; Wang,Tengfei; Xie, Haozhe; Wu, Tong; Saito, Shunsuke; Pan, Liang; Lin, Dahua; Liu, Ziwei, 2025, "3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion", https://doi.org/10.21979/N9/VMPHUZ, DR-NTU (Data), V1
The increasing demand for high-quality 3D assets across various industries necessitates efficient and automated 3D content creation. Despite recent advancements in 3D generative models, existing methods still face challenges with optimization speed, geometric fidelity, and the la...
Mar 10, 2025
Xie, Haozhe; Chen, Zhaoxi; Hong, Fangzhou; Liu, Ziwei, 2025, "Generative Gaussian Splatting for Unbounded 3D City Generation", https://doi.org/10.21979/N9/JMQHVG, DR-NTU (Data), V1
3D city generation with NeRF-based methods shows promising generation results but is computationally inefficient. Recently 3D Gaussian Splatting (3D-GS) has emerged as a highly efficient alternative for object-level 3D generation. However, adapting 3D-GS from finite-scale 3D obje...
Feb 5, 2025
Lan, Yushi; Zhou, Shangchen; Lyu, Zhaoyang; Hong, Fangzhou; Yang, Shuai; Dai, Bo; Pan, Xingang; Loy, Chen Change, 2025, "GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation", https://doi.org/10.21979/N9/ZQ85KI, DR-NTU (Data), V1
While 3D content generation has advanced significantly, existing methods still face challenges with input formats, latent space design, and output representations. This paper introduces a novel 3D generation framework that addresses these challenges, offering scalable, high-quali...
Feb 4, 2025
Xiao, Zeqi; Ouyang, Wenqi; Zhou, Yifan; Yang, Shuai; Yang, Lei; Si, Jianlou; Pan, Xingang, 2025, "Trajectory attention for fine-grained video motion control", https://doi.org/10.21979/N9/II0EM4, DR-NTU (Data), V1
Recent advancements in video generation have been greatly driven by video diffusion models, with camera motion control emerging as a crucial challenge in creating view-customized visual content. This paper introduces trajectory attention, a novel approach that performs attention...
Feb 4, 2025
Liao, Kang; Yue, Zongsheng; Wang, Zhouxia; Loy, Chen Change, 2025, "Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration", https://doi.org/10.21979/N9/DMB2QK, DR-NTU (Data), V1
Although learning-based image restoration methods have made significant progress, they still struggle with limited generalization to real-world scenarios due to the substantial domain gap caused by training on synthetic data. Existing methods address this issue by improving data...
Jan 16, 2025
Hu, Tao; Hong, Fangzhou; Liu, Ziwei, 2025, "SurMo: Surface-based 4D Motion Modeling for Dynamic Human Rendering (CVPR 2024)", https://doi.org/10.21979/N9/JDZOJE, DR-NTU (Data), V1
Dynamic human rendering from video sequences has achieved remarkable progress by formulating the rendering as a mapping from static poses to human images. However, existing methods focus on the human appearance reconstruction of every single frame while the temporal motion relati...
Jan 16, 2025
Hu, Tao; Hong, Fangzhou; Chen, Zhaoxi; Liu, Ziwei, 2025, "FashionEngine: Interactive 3D Human Generation and Editing via Multimodal Controls", https://doi.org/10.21979/N9/WRPWAN, DR-NTU (Data), V1
We present FashionEngine, an interactive 3D human generation and editing system that creates 3D digital humans via user-friendly multimodal controls such as natural languages, visual perceptions, and hand-drawing sketches. FashionEngine automates the 3D human production with thre...
Jan 15, 2025
Liu, Chenxi; Xu, Qianxiong; Miao, Hao; Yang, Sun; Zhang, Lingzheng; Long, Cheng; Li, Ziyue; Zhao, Rui, 2025, "TimeCMA: Towards LLM-Empowered Multivariate Time Series Forecasting via Cross-Modality Alignment", https://doi.org/10.21979/N9/V1XDVB, DR-NTU (Data), V1
Multivariate time series forecasting (MTSF) aims to learn temporal dynamics among variables to forecast future time series. Existing statistical and deep learning-based methods suffer from limited learnable parameters and small-scale training data. Recently, large language models...
Add Data

Log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.