7,971 to 7,980 of 8,106 Results
Python Source Code - 1.9 KB -
MD5: 2048dd55cac14ce6e5c78b1595889025
|
Python Source Code - 4.6 KB -
MD5: aae255aac4afad4d8518d795c288dbb3
|
Python Source Code - 4.1 KB -
MD5: f9b24e0e121e92f28683fcb71b7aceec
|
Python Source Code - 1.3 KB -
MD5: 7082a2ce046f9ed1932e2c2b99649bcc
|
Python Source Code - 2.7 KB -
MD5: cb49015659323e742d1e31c4a171bd12
|
Python Source Code - 4.5 KB -
MD5: a227772494fc00f0b8834c113ceb014e
|
Jan 15, 2019 - Li Mingjie
Li, Mingjie; Raihana Begum; Jianhui Fu; Qiang Xu; Teck Ming Koh; Sjoerd A. Veldhuis; Michael Grätzel; Nripan Mathews; Subodh Mhaisalkar; Sum, Tze Chien, 2019, "Replication Data for: Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals", https://doi.org/10.21979/N9/HJGXR3, DR-NTU (Data), V1
Multiple exciton generation (MEG) or carrier multiplication, a process that spawns two or more electron–hole pairs from an absorbed high-energy photon (larger than two times bandgap energy Eg), is a promising way to augment the photocurrent and overcome the Shockley–Queisser limi... |
Jan 15, 2019 -
Replication Data for: Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
RAR Archive - 276.2 KB -
MD5: 28d1d5d7df1308140701862b587fadf5
data of Fig 1 in main text |
Jan 15, 2019 -
Replication Data for: Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
RAR Archive - 1.3 MB -
MD5: 2eb7acb2c83ca48a708166fb6e87d3c5
data of Fig 2 in main text |
Jan 15, 2019 -
Replication Data for: Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals
RAR Archive - 148.9 KB -
MD5: 12a6c9b93a7f4f548b21ece19a3491e2
data of Fig 3 in main text |
