831 to 840 of 5,197 Results
Markdown Text - 77 B -
MD5: bdc20307eb4f20d12119f4afe09c1653
|
Markdown Text - 56 B -
MD5: 975c11cbdd120a42851c30cb21ec8a87
|
Plain Text - 108 B -
MD5: 78c1382260e9e1b946c555c6a6ea49c5
|
Plain Text - 207 B -
MD5: c674942023d0e317ad60d5d7d1703ff6
|
application/vnd.stepmania.stepchart - 10.8 KB -
MD5: 5c9ee4b63efcb9c03bf139c5a0f6b050
|
Python Source Code - 6.6 KB -
MD5: 335224a28bf892fd4e1b6f689ce87d71
|
Python Source Code - 4.4 KB -
MD5: ce8c9b64647ea2d5a15a783f6dfd3654
|
Jul 30, 2025
Research topics: • Network-on-Chip • Cache coherence • Machine Learning |
Jun 26, 2025 - Yew Lee TAN
Tan, Yew Lee, 2025, "Replication Data for: Dual Downsample Vision Transformer for Handwritten Text Recognition (ICDAR2025)", https://doi.org/10.21979/N9/DREQKD, DR-NTU (Data), V1
Replication Data for: Dual Downsample Vision Transformer for Handwritten Text Recognition (ICDAR2025) to uncompress: cat lines_recognition_part_* | tar --zstd -xvf - |
Jun 26, 2025 -
Replication Data for: Dual Downsample Vision Transformer for Handwritten Text Recognition (ICDAR2025)
Unknown - 9.0 GB -
MD5: 1147930ec7f6e7642387b67b0afea6bb
|
