611 to 620 of 5,040 Results
JSON - 7.3 KB -
MD5: a3ba0f8a32fb4ef6bc317b8cc37e5961
|
JSON - 1.9 KB -
MD5: 62555edeb758c5788541a8cde01e0dfa
|
JSON - 5.7 KB -
MD5: 003ab187d043007dfaa89ff3f2307b91
|
JSON - 2 B -
MD5: 99914b932bd37a50b983c5e7c90ae93b
|
JSON - 4.4 KB -
MD5: fe570be87e98c423abed41639b0eaf1e
|
JSON - 4.2 KB -
MD5: 3d384b0454c345190d24d0579476b818
|
JSON - 6.2 KB -
MD5: 9d744d40f2c068a2cbba9bfaabd90399
|
JSON - 1.1 KB -
MD5: 42fe36a6c54d320de30309e454309e84
|
JSON - 2.8 KB -
MD5: 78468ef2d38829df3e3e71154b6b7179
|
Dec 10, 2025 - Junqi ZHAO
Chinchure, Aditya; Ravi, Sahithya; Ng, Raymond; Shwartz, Vered; Li, Boyang; Sigal, Leonid, 2025, "Replication Data for: Black Swan: Abductive and Defeasible Video Reasoning in Unpredictable Events", https://doi.org/10.21979/N9/HOAFUL, DR-NTU (Data), V1
BlackSwanSuite is a benchmark for evaluating VLMs’ ability to reason about unexpected events through abductive and defeasible tasks. The tasks either artificially limit the amount of visual information provided to models while questioning them about hidden unexpected events, or p... |
