View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
Replication Data for: Towards Efficient Convolutional Neural Network for Embedded Hardware via Multi-Dimensional Pruning |
Identification Number: |
doi:10.21979/N9/BTNOJN |
Distributor: |
DR-NTU (Data) |
Date of Distribution: |
2023-12-14 |
Version: |
1 |
Bibliographic Citation: |
Kong, Hao; Liu, Weichen, 2023, "Replication Data for: Towards Efficient Convolutional Neural Network for Embedded Hardware via Multi-Dimensional Pruning", https://doi.org/10.21979/N9/BTNOJN, DR-NTU (Data), V1, UNF:6:YowCvL3Bn3yfomoWb2+WPg== [fileUNF] |
Citation |
|
Title: |
Replication Data for: Towards Efficient Convolutional Neural Network for Embedded Hardware via Multi-Dimensional Pruning |
Identification Number: |
doi:10.21979/N9/BTNOJN |
Authoring Entity: |
Kong, Hao (Nanyang Technological University) |
Liu, Weichen (Nanyang Technological University) |
|
Software used in Production: |
Pycharm |
Grant Number: |
Academic Research Fund Tier 2 (MOE2019-T2-1-071) |
Grant Number: |
NAP (M4082282) |
Distributor: |
DR-NTU (Data) |
Access Authority: |
Kong, Hao |
Depositor: |
Kong, Hao |
Date of Deposit: |
2023-05-13 |
Holdings Information: |
https://doi.org/10.21979/N9/BTNOJN |
Study Scope |
|
Keywords: |
Computer and Information Science, Computer and Information Science, Multi-dimensional model compression, Deep learning acceleration |
Abstract: |
This dataset is created to store the related data of the following published paper: Hao Kong, Di Liu, Xiangzhong Luo, Shuo Huai, Ravi Subramaniam, Christian Makaya, Qian Lin, Weichen Liu*, “Towards Efficient Convolutional Neural Network for Embedded Hardware via Multi-Dimensional Pruning”, ACM/IEEE Design Automation Conference (DAC), 2023. |
Kind of Data: |
Source code |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Notes: |
MIT License<br> Copyright (c) 2022 Hao Kong<br><br> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:<br><br> The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.<br><br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
Other Study Description Materials |
|
Related Publications |
|
Citation |
|
Identification Number: |
10.1109/DAC56929.2023.10247965 |
Bibliographic Citation: |
Kong, H., Liu, D., Luo, X., Huai, S., Subramaniam, R., Makaya, C., ... & Liu, W. (2023, July). Towards Efficient Convolutional Neural Network for Embedded Hardware via Multi-Dimensional Pruning. In 2023 60th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE. |
Citation |
|
Identification Number: |
10356/167489 |
Bibliographic Citation: |
Kong, H., Liu, D., Luo, X., Huai, S., Subramaniam, R., Makaya, C., ... & Liu, W. (2023, July). Towards Efficient Convolutional Neural Network for Embedded Hardware via Multi-Dimensional Pruning. In 2023 60th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE. |
File Description--f112245 |
|
File: depth_resnet50.tab |
|
|
|
Notes: |
UNF:6:MiWG8Ugc8u6XggEAZMqiPg== |
File Description--f112211 |
|
File: resolution_resnet50.tab |
|
|
|
Notes: |
UNF:6:6TW8Cfq+ncf4EPDTFiTXhw== |
File Description--f112208 |
|
File: width_resnet50.tab |
|
|
|
Notes: |
UNF:6:/yqxOdOsdrrzyEMQEXidNA== |
List of Variables: |
|
Variables |
|
f112245 Location: |
Variable Format: character Notes: UNF:6:9Syx2Tp+fO5ow94nLjhC5Q== |
f112245 Location: |
Summary Statistics: Max. 3.0; Min. 1.0; Mean 1.9300000000000002; StDev 0.8439325934114774; Valid 100.0; Variable Format: numeric Notes: UNF:6:4rrHVYRLr5fAbRoBA6kj5w== |
f112245 Location: |
Summary Statistics: Min. 1.0; Mean 2.5599999999999996; Max. 4.0; StDev 1.1574964275530097; Valid 100.0; Variable Format: numeric Notes: UNF:6:uD9UAQixvFs0Zbs4p8FtTg== |
f112245 Location: |
Summary Statistics: Mean 3.57; Min. 1.0; Max. 6.0; Valid 100.0; StDev 1.8436623630944222; Variable Format: numeric Notes: UNF:6:6eVGGNoZpN7QcMbLH5fRkg== |
f112245 Location: |
Summary Statistics: Mean 2.03; Valid 100.0; Max. 3.0; StDev 0.79715402868865; Min. 1.0 Variable Format: numeric Notes: UNF:6:bZtsCNX+Wdhm8Tki4kicPw== |
f112245 Location: |
Summary Statistics: Max. 64.0; StDev 0.0; Valid 100.0; Mean 64.0; Min. 64.0 Variable Format: numeric Notes: UNF:6:Dg4TLVpyjbGMxr+0EujS3g== |
f112245 Location: |
Summary Statistics: Valid 100.0; Mean 128.0; Min. 128.0; StDev 0.0; Max. 128.0 Variable Format: numeric Notes: UNF:6:ywRIUTqRFLRC+8YXDsrFOw== |
f112245 Location: |
Summary Statistics: Valid 100.0; StDev 0.0; Min. 256.0; Mean 256.0; Max. 256.0 Variable Format: numeric Notes: UNF:6:ncmRIfUrResUaEe9hCiPVw== |
f112245 Location: |
Summary Statistics: Valid 100.0; Max. 512.0; Mean 512.0; Min. 512.0; StDev 0.0 Variable Format: numeric Notes: UNF:6:r3Np3AKiEheMbvkZ+rg5qw== |
f112245 Location: |
Summary Statistics: Max. 224.0; Min. 224.0; StDev 0.0; Valid 100.0; Mean 224.0; Variable Format: numeric Notes: UNF:6:gl0JF7bOWB1M68r1rl906w== |
f112245 Location: |
Summary Statistics: StDev 0.0; Mean 1.0; Max. 1.0; Min. 1.0; Valid 100.0 Variable Format: numeric Notes: UNF:6:uiwq51K46f3Bh7o/C/ucAw== |
f112211 Location: |
Variable Format: character Notes: UNF:6:WHen03lmMel7y2ruKC8F+Q== |
f112211 Location: |
Summary Statistics: Valid 43.0; Max. 3.0; Mean 3.0; StDev 0.0; Min. 3.0 Variable Format: numeric Notes: UNF:6:aVuhy3zp/uIHkTkwB1UQxw== |
f112211 Location: |
Summary Statistics: Min. 4.0; Mean 4.0; Valid 43.0; Max. 4.0; StDev 0.0 Variable Format: numeric Notes: UNF:6:1rapvoyFAjKKzP5SFDNtGQ== |
f112211 Location: |
Summary Statistics: StDev 0.0; Max. 6.0; Valid 43.0; Min. 6.0; Mean 6.0; Variable Format: numeric Notes: UNF:6:K77+cHcNmRCIohsopfy4wA== |
f112211 Location: |
Summary Statistics: Mean 3.0; Max. 3.0; StDev 0.0; Min. 3.0; Valid 43.0; Variable Format: numeric Notes: UNF:6:aVuhy3zp/uIHkTkwB1UQxw== |
f112211 Location: |
Summary Statistics: Mean 64.0; StDev 0.0; Max. 64.0; Valid 43.0; Min. 64.0; Variable Format: numeric Notes: UNF:6:K2p1+z9tb8wOACkki8ftPQ== |
f112211 Location: |
Summary Statistics: Min. 128.0; Mean 128.0; Valid 43.0; Max. 128.0; StDev 0.0 Variable Format: numeric Notes: UNF:6:1jwm4QScGr60VEhyqZq7Ag== |
f112211 Location: |
Summary Statistics: Max. 256.0; Valid 43.0; StDev 0.0; Mean 256.0; Min. 256.0 Variable Format: numeric Notes: UNF:6:811aR8KfZAUTftLOJpxPDg== |
f112211 Location: |
Summary Statistics: Min. 512.0; StDev 0.0; Valid 43.0; Max. 512.0; Mean 512.0; Variable Format: numeric Notes: UNF:6:bIpegQ01bEvnfb49zMXmEQ== |
f112211 Location: |
Summary Statistics: Valid 43.0; Mean 140.0; Max. 224.0; Min. 56.0; StDev 50.226155204899634 Variable Format: numeric Notes: UNF:6:sW5iqfxOZ3aYPa73aR5WGA== |
f112211 Location: |
Summary Statistics: Min. 0.25; StDev 0.22422390716473048; Valid 43.0; Max. 1.0; Mean 0.625 Variable Format: numeric Notes: UNF:6:/ON6XU+WwOpGxigWS5G34Q== |
f112208 Location: |
Variable Format: character Notes: UNF:6:mpXO9aO6x/1+RB46FABFRQ== |
f112208 Location: |
Summary Statistics: Valid 100.0; StDev 0.0; Max. 3.0; Min. 3.0; Mean 3.0 Variable Format: numeric Notes: UNF:6:/YpJspVrfSzcYIIeQkPv4Q== |
f112208 Location: |
Summary Statistics: Max. 4.0; Min. 4.0; Mean 4.0; StDev 0.0; Valid 100.0 Variable Format: numeric Notes: UNF:6:J+hMvZsgeqBcRmdTo2QsFQ== |
f112208 Location: |
Summary Statistics: Max. 6.0; Mean 6.0; Valid 100.0; StDev 0.0; Min. 6.0 Variable Format: numeric Notes: UNF:6:/aS/jYRv58kV21yerrqSeA== |
f112208 Location: |
Summary Statistics: Min. 3.0; Valid 100.0; StDev 0.0; Max. 3.0; Mean 3.0 Variable Format: numeric Notes: UNF:6:/YpJspVrfSzcYIIeQkPv4Q== |
f112208 Location: |
Summary Statistics: Mean 40.8; Max. 64.0; Min. 16.0; StDev 17.225773501566568; Valid 100.0 Variable Format: numeric Notes: UNF:6:KPSL62T/34pQVZ2/+vV8ng== |
f112208 Location: |
Summary Statistics: Min. 32.0; Valid 100.0; Max. 128.0; Mean 87.03999999999999; StDev 35.254319887172294 Variable Format: numeric Notes: UNF:6:V4XYzlJlp8S30H+rBe04KA== |
f112208 Location: |
Summary Statistics: Mean 154.88; Min. 64.0; StDev 77.81683752260948; Max. 256.0; Valid 100.0 Variable Format: numeric Notes: UNF:6:GjEDLzFmK6YjyB8rjdeeAQ== |
f112208 Location: |
Summary Statistics: Mean 309.76; Min. 128.0; Max. 512.0; StDev 155.63367504521895; Valid 100.0 Variable Format: numeric Notes: UNF:6:GvQqGrU56lfI5Nj3DGf1Vg== |
f112208 Location: |
Summary Statistics: Valid 100.0; Min. 224.0; StDev 0.0; Mean 224.0; Max. 224.0 Variable Format: numeric Notes: UNF:6:gl0JF7bOWB1M68r1rl906w== |
f112208 Location: |
Summary Statistics: Min. 1.0; StDev 0.0; Mean 1.0; Max. 1.0; Valid 100.0; Variable Format: numeric Notes: UNF:6:uiwq51K46f3Bh7o/C/ucAw== |
Label: |
augment.py |
Notes: |
text/x-python |
Label: |
benchmark.py |
Notes: |
text/x-python |
Label: |
benchmark_resnet50.csv |
Notes: |
text/csv |
Label: |
benchmark_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
blocks.py |
Notes: |
text/x-python |
Label: |
checkpoint.py |
Notes: |
text/x-python |
Label: |
cifar.py |
Notes: |
text/x-python |
Label: |
config.py |
Notes: |
text/x-python |
Label: |
dataloader.py |
Notes: |
text/x-python |
Label: |
depth_pruner_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
depth_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
distributed.py |
Notes: |
text/x-python |
Label: |
eval_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
imagenet.py |
Notes: |
text/x-python |
Label: |
image.py |
Notes: |
text/x-python |
Label: |
ines_wo-ites.yaml |
Notes: |
application/octet-stream |
Label: |
joint_pruner_resnet110_v2.yaml |
Notes: |
application/octet-stream |
Label: |
joint_pruner_resnet110_v3.yaml |
Notes: |
application/octet-stream |
Label: |
joint_pruner_resnet110.yaml |
Notes: |
application/octet-stream |
Label: |
joint_pruner_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
LICENSE |
Notes: |
text/plain; charset=US-ASCII |
Label: |
logging.py |
Notes: |
text/x-python |
Label: |
main.py |
Notes: |
text/x-python |
Label: |
main_worker.py |
Notes: |
text/x-python |
Label: |
meters.py |
Notes: |
text/x-python |
Label: |
mnade-l_resnet50_v2.yaml |
Notes: |
application/octet-stream |
Label: |
mnade-l_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
mnade-m_resnet50_v2.yaml |
Notes: |
application/octet-stream |
Label: |
mnade-m_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
mnade_resnet110_mix-res.yaml |
Notes: |
application/octet-stream |
Label: |
mnade_resnet110.yaml |
Notes: |
application/octet-stream |
Label: |
mnade_resnet50-1.yaml |
Notes: |
application/octet-stream |
Label: |
mnade_resnet50_2.yaml |
Notes: |
application/octet-stream |
Label: |
mnade_resnet50_3.yaml |
Notes: |
application/octet-stream |
Label: |
mnade_resnet50_4.yaml |
Notes: |
application/octet-stream |
Label: |
mnade_resnet50_5.yaml |
Notes: |
application/octet-stream |
Label: |
mnade_resnet50_6.yaml |
Notes: |
application/octet-stream |
Label: |
model_samples.ipynb |
Notes: |
application/x-ipynb+json |
Label: |
models.py |
Notes: |
text/x-python |
Label: |
net.py |
Notes: |
text/x-python |
Label: |
optimizer.py |
Notes: |
text/x-python |
Label: |
prune_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
pruner.py |
Notes: |
text/x-python |
Label: |
README.md |
Notes: |
text/markdown |
Label: |
resnet110_mix-res.yaml |
Notes: |
application/octet-stream |
Label: |
resnet110.yaml |
Notes: |
application/octet-stream |
Label: |
resnet44.yaml |
Notes: |
application/octet-stream |
Label: |
resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
resnet.py |
Notes: |
text/x-python |
Label: |
resolution_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
trainer.py |
Notes: |
text/x-python |
Label: |
transforms.py |
Notes: |
text/x-python |
Label: |
utils.py |
Notes: |
text/x-python |
Label: |
validation_samples-checkpoint.ipynb |
Notes: |
application/x-ipynb+json |
Label: |
validation_samples.ipynb |
Notes: |
application/x-ipynb+json |
Label: |
verify_model-checkpoint.ipynb |
Notes: |
application/x-ipynb+json |
Label: |
verify_model.ipynb |
Notes: |
application/x-ipynb+json |
Label: |
width_pruner_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
width_resnet50.yaml |
Notes: |
application/octet-stream |
Label: |
wo-ines_ites.yaml |
Notes: |
application/octet-stream |
Label: |
wo-ines_wo-ites.yaml |
Notes: |
application/octet-stream |