View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
Replication Data for: fNIRS-QC: crowd-sourced creation of a dataset and machine learning model for fNIRS quality control |
Identification Number: |
doi:10.21979/N9/C8VYZG |
Distributor: |
DR-NTU (Data) |
Date of Distribution: |
2021-08-12 |
Version: |
1 |
Bibliographic Citation: |
Gabrieli, Giulio; Bizzego, Andrea; Esposito, Gianuca, 2021, "Replication Data for: fNIRS-QC: crowd-sourced creation of a dataset and machine learning model for fNIRS quality control", https://doi.org/10.21979/N9/C8VYZG, DR-NTU (Data), V1, UNF:6:vYqYHMToBUb3vKU5cL7RmA== [fileUNF] |
Citation |
|
Title: |
Replication Data for: fNIRS-QC: crowd-sourced creation of a dataset and machine learning model for fNIRS quality control |
Identification Number: |
doi:10.21979/N9/C8VYZG |
Authoring Entity: |
Gabrieli, Giulio (Nanyang Technological University) |
Bizzego, Andrea (University of Trento) |
|
Esposito, Gianuca (Nanyang Technological University) |
|
Software used in Production: |
Python |
Distributor: |
DR-NTU (Data) |
Access Authority: |
Esposito, Gianluca |
Depositor: |
Gabrieli Giulio |
Date of Deposit: |
2021-07-22 |
Holdings Information: |
https://doi.org/10.21979/N9/C8VYZG |
Study Scope |
|
Keywords: |
Social Sciences, Social Sciences, fNIRS |
Abstract: |
Replication Data for: fNIRS-QC: crowd-sourced creation of a dataset and machine learning model for fNIRS quality control |
Country: |
Singapore |
Kind of Data: |
fNIRS data, labels, ML models |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Notes: |
Please contact gianluca.esposito@ntu.edu.sg to access the file. |
Other Study Description Materials |
|
File Description--f73784 |
|
File: ratings.tab |
|
|
|
Notes: |
UNF:6:EcnRCYcJUcoWSmexjaAaPw== |
File Description--f73789 |
|
File: users.tab |
|
|
|
Notes: |
UNF:6:yOqh1wHUSdZHZHMgl4T8dA== |
List of Variables: | |
Variables |
|
f73784 Location: |
Variable Format: character Notes: UNF:6:Odr5bipyPzgF40lCxx737w== |
f73784 Location: |
Summary Statistics: StDev 9.012598663444814; Min. 1.0; Max. 25.0; Valid 2438.0; Mean 17.088187038556235 Variable Format: numeric Notes: UNF:6:+/rD8bfwKL5IKm4y4Aaulw== |
f73784 Location: |
Variable Format: character Notes: UNF:6:8YiU7a0drrIGgI9wqXtDBA== |
f73784 Location: |
Summary Statistics: Valid 2438.0; Mean 30711.16201804819; Min. 158.0; StDev 841440.0446752573; Max. 4.1273325E7; Variable Format: numeric Notes: UNF:6:8qM8/kM0V2+8VngT2U3BOg== |
f73789 Location: |
Summary Statistics: StDev 6.487166818676188; Min. 1.0; Max. 25.0; Mean 15.916666666666668; Valid 12.0; Variable Format: numeric Notes: UNF:6:OMMgyzTA9TEBTJtlikqfpQ== |
f73789 Location: |
Variable Format: character Notes: UNF:6:5OXa0yt5DC8ebeVPuQcINA== |
Label: |
01_process_ratings.py |
Text: |
Script to process the labels |
Notes: |
text/x-python |
Label: |
02_maketraintest.py |
Text: |
Train/Test partition splitter |
Notes: |
text/x-python |
Label: |
03_training.py |
Text: |
Model training |
Notes: |
text/x-python |
Label: |
04_predict.py |
Text: |
Model testing |
Notes: |
text/x-python |
Label: |
dataset.py |
Text: |
file to handle the dataset |
Notes: |
text/x-python |
Label: |
labels.csv |
Text: |
Labels used for the model |
Notes: |
text/csv |
Label: |
model.pth |
Text: |
Trained mdoel |
Notes: |
application/octet-stream |
Label: |
nets.py |
Text: |
Network architecture |
Notes: |
text/x-python |
Label: |
Signals.zip |
Text: |
Signals used for the study |
Notes: |
application/zip |
Label: |
testlabels.csv |
Text: |
test labels |
Notes: |
text/csv |
Label: |
trainlabels.csv |
Text: |
train labels |
Notes: |
text/csv |