Related Data for: A Machine Learning Approach For The Automatic Estimation Of Fixation-Time Data Signals’ Quality (doi:10.21979/N9/0FU9ZG)

View:

Part 1: Document Description
Part 2: Study Description
Part 3: Data Files Description
Part 4: Variable Description
Part 5: Other Study-Related Materials
Entire Codebook

(external link) (external link)

Document Description

Citation

Title:

Related Data for: A Machine Learning Approach For The Automatic Estimation Of Fixation-Time Data Signals’ Quality

Identification Number:

doi:10.21979/N9/0FU9ZG

Distributor:

DR-NTU (Data)

Date of Distribution:

2020-10-13

Version:

2

Bibliographic Citation:

Gabrieli, Giulio; Zhang, Lijun; Setoh, Peipei, 2020, "Related Data for: A Machine Learning Approach For The Automatic Estimation Of Fixation-Time Data Signals’ Quality", https://doi.org/10.21979/N9/0FU9ZG, DR-NTU (Data), V2, UNF:6:kPNKAuB3E6Sk9elIDziVzA== [fileUNF]

Study Description

Citation

Title:

Related Data for: A Machine Learning Approach For The Automatic Estimation Of Fixation-Time Data Signals’ Quality

Identification Number:

doi:10.21979/N9/0FU9ZG

Authoring Entity:

Gabrieli, Giulio (Nanyang Technological University)

Zhang, Lijun (Nanyang Technological University)

Setoh, Peipei (Nanyang Technological University)

Software used in Production:

Python

Grant Number:

020158-00001

Distributor:

DR-NTU (Data)

Access Authority:

Gabrieli Giulio

Depositor:

Gabrieli Giulio

Date of Deposit:

2020-10-09

Holdings Information:

https://doi.org/10.21979/N9/0FU9ZG

Study Scope

Keywords:

Social Sciences, Social Sciences, Pupillometry, Infants, Fixation Time, Machine Learning

Abstract:

Fixation time measures have been widely adopted in infants' and young children's studies, because they can successfully tap on infants' meaningful nonverbal behaviors. While recording preverbal children's behavior is relatively simple, the analysis of collected signals requires extensive manual preprocessing. In this paper, we investigate the possibility of using different Machine Learning (ML) — a Linear SVC, a Non-Linear SVC, and K-Neighbors— classifiers to automatically discriminate between Usable and Unusable eye fixation recordings. Results of our models show an accuracy of up to the 80%, suggesting that ML tools can help human researchers during the preprocessing phase of collected data.

Country:

Singapore

Unit of Analysis:

Individual toddlers

Universe:

18- to 33-month-old toddlers

Kind of Data:

Behavioral Data

Methodology and Processing

Data Collector:

Zhang, Lijun

Frequency of Data Collection:

Single visit

Mode of Data Collection:

Laboratory session

Sources Statement

Data Access

Notes:

Please contact giulio001@e.ntu.edu.sg or psetoh@ntu.edu.sg to get access to the original database.

Other Study Description Materials

Related Materials

Zhang, L. (2017). Infants’ moral expectations about authority figures. Master's thesis, Nanyang Technological University, Singapore. <a href="https://hdl.handle.net/10356/70904">https://hdl.handle.net/10356/70904</a>

Related Publications

Citation

Identification Number:

10.3390/s20236775

Bibliographic Citation:

Gabrieli, G., Balagtas, J. P. M., Esposito, G., & Setoh, P. (2020). A Machine Learning Approach for the Automatic Estimation of Fixation-Time Data Signals’ Quality. Sensors, 20(23), 6775.

Citation

Identification Number:

10356/145869

Bibliographic Citation:

Gabrieli, G., Balagtas, J. P. M., Esposito, G., & Setoh, P. (2020). A Machine Learning Approach for the Automatic Estimation of Fixation-Time Data Signals’ Quality. Sensors, 20(23), 6775.

File Description--f54871

File: db.tab

  • Number of cases: 112

  • No. of variables per record: 38

  • Type of File: text/tab-separated-values

Notes:

UNF:6:Ilgsr+/po2mt0okcjiWeRQ==

File Description--f54870

File: scores.tab

  • Number of cases: 3

  • No. of variables per record: 8

  • Type of File: text/tab-separated-values

Notes:

UNF:6:urkJqTSw8q/YhkhNmar/Sw==

Variable Description

List of Variables:

Variables

Model

f54870 Location:

Variable Format: character

Notes: UNF:6:V4s1rxnh7yyr1MTtHi4dxg==

Train_MCC

f54870 Location:

Summary Statistics: Min. 0.2072317716656497; Mean 0.4104991989833661; StDev 0.17727196834261355; Max. 0.5330402200679127; Valid 3.0;

Variable Format: numeric

Notes: UNF:6:dxnULIjyMWuZQO4V73hBOQ==

Train_Acc.

f54870 Location:

Summary Statistics: Max. 0.8102409638554217; Mean 0.7409638554216867; Min. 0.6024096385542169; StDev 0.11999147160868724; Valid 3.0

Variable Format: numeric

Notes: UNF:6:MDIGvuRU2t3Qw0bZaM814g==

Accuracy

f54870 Location:

Summary Statistics: Max. 0.803921568627451; Mean 0.6928104575163399; Min. 0.5686274509803921; Valid 3.0; StDev 0.11819046614395509

Variable Format: numeric

Notes: UNF:6:5zAlcy6SbxcJoM2i6P+w7Q==

Precision

f54870 Location:

Summary Statistics: Min. 0.9583333333333334; Valid 3.0; Max. 1.0; Mean 0.9768518518518519; StDev 0.021215628217388132

Variable Format: numeric

Notes: UNF:6:4dKGOTJgr5y6AycmbeTm3Q==

Recall

f54870 Location:

Summary Statistics: Mean 0.6590909090909091; Max. 0.7954545454545454; StDev 0.13636363636363635; Min. 0.5227272727272727; Valid 3.0

Variable Format: numeric

Notes: UNF:6:Kv89eruuBeIk7+BNpUijPg==

F1

f54870 Location:

Summary Statistics: Max. 0.875; Valid 3.0; StDev 0.09985544762821888; Min. 0.6764705882352942; Mean 0.7819970453934999

Variable Format: numeric

Notes: UNF:6:5ezFXRmtCR3z/z0cwatg+Q==

MCC

f54870 Location:

Summary Statistics: Valid 3.0; Mean 0.4042315331566124; Max. 0.4928602798068185; Min. 0.2618924633082486; StDev 0.1244995268186477;

Variable Format: numeric

Notes: UNF:6:ckjKsuzVsUGQ5h0ZSlyIXQ==

Other Study-Related Materials

Label:

kNN.joblib

Text:

Dump of the trained classifier

Notes:

application/octet-stream

Other Study-Related Materials

Label:

LinearSVC.joblib

Text:

Dump of the trained classifier

Notes:

application/octet-stream

Other Study-Related Materials

Label:

ml.py

Text:

Script used to train and test the classifiers on NTU's HPC Gekko cluster

Notes:

text/x-python

Other Study-Related Materials

Label:

NonLinearSVC.joblib

Text:

Dump of the trained classifier

Notes:

application/octet-stream

Other Study-Related Materials

Label:

output_1605001925.txt

Text:

Timestamped output file.

Notes:

text/plain