An Ego network of suspected sextortionist(s) (doi:10.21979/N9/VSK3KB)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

(external link) (external link)

Document Description

Citation

Title:

An Ego network of suspected sextortionist(s)

Identification Number:

doi:10.21979/N9/VSK3KB

Distributor:

DR-NTU (Data)

Date of Distribution:

2019-11-27

Version:

1

Bibliographic Citation:

Oggier, Frederique Elise; Datta, Anwitaman; Phetsouvanh, Silivanxay, 2019, "An Ego network of suspected sextortionist(s)", https://doi.org/10.21979/N9/VSK3KB, DR-NTU (Data), V1

Study Description

Citation

Title:

An Ego network of suspected sextortionist(s)

Identification Number:

doi:10.21979/N9/VSK3KB

Authoring Entity:

Oggier, Frederique Elise (Nanyang Technological University)

Datta, Anwitaman (Nanyang Technological University)

Phetsouvanh, Silivanxay (Nanyang Technological University)

Software used in Production:

Python

Distributor:

DR-NTU (Data)

Access Authority:

Oggier, Frederique Elise

Depositor:

Oggier, Frederique Elise

Date of Deposit:

2019-11-27

Holdings Information:

https://doi.org/10.21979/N9/VSK3KB

Study Scope

Keywords:

Computer and Information Science, Mathematical Sciences, Computer and Information Science, Mathematical Sciences, Bitcoin network

Abstract:

This data contains a Bitcoin subgraph which is the ego network of suspected sextortionist(s). The file name is of the form Gf***.gml, *** is the Bitcoin address of a node suspected of being involved in sextorsions. This graph is said to be an ego network because it is centered around occurrences of this address. <br><br> One way to use this dataset is the Python library NetworkX.<br> You can load the graph as follows: <br><br> <code> import networkx as nx <br> G = nx.read_gml('Gf3HXdb3HAw1wVzU9b7ZSigvGaStd8KoZ3zJ.gml') </code> <br><br> You can check the number of nodes and edges as follows: <br><br> <code> G.order()<br> 41671<br> <br> G.size()<br> 46949<br> </code> <br> The graph contains two types of nodes, here are two examples:<br> <br> <code> G.nodes()['34065075']<br> {'txdate': 1552470020.0, 'txhash': '845d9a6490b00c35ceab5044f262bfcf3df12a3a62367882ffad88d053ab520b', 'labels': 'tx'}<br> </code> <br> <code> G.nodes()['11680699']<br> {'outid': '845d9a6490b00c35ceab5044f262bfcf3df12a3a62367882ffad88d053ab520b@0', 'addr': '3HXdb3HAw1wVzU9b7ZSigvGaStd8KoZ3zJ', 'labels': 'out'} </code> <br><br> The first is a transaction node, txdate contains the date of the transaction in epoch time, txhash contains the hash of the transaction. <br><br> The second is an address node, addr contains the wallet address, the outid refers to the way transaction data is stored on the Blockchain: every address node is given as the output of a transaction, with its output number (@ is used as a delimiter, 0 is the output number).

Kind of Data:

Graph data

Methodology and Processing

Sources Statement

Data Access

Other Study Description Materials

Related Publications

Citation

Identification Number:

10.1007/s13278-020-00650-x

Bibliographic Citation:

Oggier, F., Datta, A., & Phetsouvanh, S. (2020). An ego network analysis of sextortionists. Social Network Analysis and Mining, 10(1). doi:10.1007/s13278-020-00650-x

Citation

Identification Number:

10356/143527

Bibliographic Citation:

Oggier, F., Datta, A., & Phetsouvanh, S. (2020). An ego network analysis of sextortionists. Social Network Analysis and Mining, 10(1).

Other Study-Related Materials

Label:

Gf3HXdb3HAw1wVzU9b7ZSigvGaStd8KoZ3zJ.gml

Text:

Graph data in gml format. See description above for instructions on how to read it in NetworkX (Python).

Notes:

application/gml+xml