View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
ZeroBN: Learning Compact Neural Networks For Latency-Critical Edge Systems |
Identification Number: |
doi:10.21979/N9/IRNJ4I |
Distributor: |
DR-NTU (Data) |
Date of Distribution: |
2022-03-07 |
Version: |
1 |
Bibliographic Citation: |
Shuo, Huai; Liu, Weichen, 2022, "ZeroBN: Learning Compact Neural Networks For Latency-Critical Edge Systems", https://doi.org/10.21979/N9/IRNJ4I, DR-NTU (Data), V1, UNF:6:+jmG0vdNb5kvT4IJ3OJAeA== [fileUNF] |
Citation |
|
Title: |
ZeroBN: Learning Compact Neural Networks For Latency-Critical Edge Systems |
Identification Number: |
doi:10.21979/N9/IRNJ4I |
Authoring Entity: |
Shuo, Huai (Nanyang Technological University) |
Liu, Weichen (Nanyang Technological University) |
|
Software used in Production: |
Python |
Grant Number: |
Singapore Government through the Industry Alignment Fund - Industry Collaboration Projects Grant (I1801E0028) |
Distributor: |
DR-NTU (Data) |
Access Authority: |
Shuo, Huai |
Depositor: |
Shuo, Huai |
Date of Deposit: |
2022-03-07 |
Holdings Information: |
https://doi.org/10.21979/N9/IRNJ4I |
Study Scope |
|
Keywords: |
Engineering, Engineering, ZeroBN, Compact Learning |
Abstract: |
Codes and data for "ZeroBN: Learning Compact Neural Networks For Latency-Critical Edge Systems" |
Kind of Data: |
program source code |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Other Study Description Materials |
|
Related Publications |
|
Citation |
|
Identification Number: |
10.1109/DAC18074.2021.9586309 |
Bibliographic Citation: |
Huai, S., Zhang, L., Liu, D., Liu, W., & Subramaniam, R. (2021, December). ZeroBN: Learning Compact Neural Networks For Latency-Critical Edge Systems. In 2021 58th ACM/IEEE Design Automation Conference (DAC) (pp. 151-156). IEEE. |
Citation |
|
Identification Number: |
10356/155572 |
Bibliographic Citation: |
Huai, S., Zhang, L., Liu, D., Liu, W. & Subramaniam, R. (2021). ZeroBN : learning compact neural networks for latency-critical edge systems. 2021 58th ACM/IEEE Design Automation Conference (DAC), 151-156. |
File Description--f86101 |
|
File: y_i.tab |
|
|
|
Notes: |
UNF:6:+jmG0vdNb5kvT4IJ3OJAeA== |
List of Variables: |
|
Variables |
|
f86101 Location: |
Summary Statistics: StDev 0.12967455202424852; Mean 0.06845981380958771; Valid 5503.0; Min. 7.58904258879589E-11; Max. 1.23619699478149 Variable Format: numeric Notes: UNF:6:+jmG0vdNb5kvT4IJ3OJAeA== |
Label: |
channel_selection.py |
Notes: |
text/x-python |
Label: |
channel_selection.py |
Notes: |
text/x-python |
Label: |
densenet.py |
Notes: |
text/x-python |
Label: |
environment.yml |
Notes: |
application/octet-stream |
Label: |
framework.png |
Notes: |
image/png |
Label: |
googlenet.py |
Notes: |
text/x-python |
Label: |
googlenet_torch.py |
Notes: |
text/x-python |
Label: |
googlenet_torch_scale.py |
Notes: |
text/x-python |
Label: |
imagenet100.txt |
Notes: |
text/plain |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
load_mat.py |
Notes: |
text/x-python |
Label: |
predictor.py |
Notes: |
text/x-python |
Label: |
preresnet.py |
Notes: |
text/x-python |
Label: |
README.md |
Notes: |
text/markdown |
Label: |
resnet_new.py |
Notes: |
text/x-python |
Label: |
resnet_torch.py |
Notes: |
text/x-python |
Label: |
save_models_link |
Notes: |
text/plain; charset=US-ASCII |
Label: |
test.m |
Notes: |
text/x-matlab |
Label: |
train_cifar10.py |
Notes: |
text/x-python |
Label: |
train_imagenet.py |
Notes: |
text/x-python |
Label: |
train_imagenet_resnetnew.py |
Notes: |
text/x-python |
Label: |
train.m |
Notes: |
text/x-matlab |
Label: |
trans_googlenet_half.py |
Notes: |
text/x-python |
Label: |
trans_googlenet.py |
Notes: |
text/x-python |
Label: |
trans_googlenet_scale_half.py |
Notes: |
text/x-python |
Label: |
trans_googlenet_scale.py |
Notes: |
text/x-python |
Label: |
trans_resnet.py |
Notes: |
text/x-python |
Label: |
trans_vgg19_half.py |
Notes: |
text/x-python |
Label: |
trans_vgg19.py |
Notes: |
text/x-python |
Label: |
vgg.py |
Notes: |
text/x-python |
Label: |
vgg.py |
Notes: |
text/x-python |
Label: |
vgg_torch.py |
Notes: |
text/x-python |