Synthetic noise dataset (doi:10.21979/N9/ETJWLU)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

(external link)

Document Description

Citation

Title:

Synthetic noise dataset

Identification Number:

doi:10.21979/N9/ETJWLU

Distributor:

DR-NTU (Data)

Date of Distribution:

2023-03-16

Version:

1

Bibliographic Citation:

Luo, Zhengding; Shi, Dongyuan; Gan, Woon-Seng, 2023, "Synthetic noise dataset", https://doi.org/10.21979/N9/ETJWLU, DR-NTU (Data), V1

Study Description

Citation

Title:

Synthetic noise dataset

Identification Number:

doi:10.21979/N9/ETJWLU

Authoring Entity:

Luo, Zhengding (Nanyang Technological University)

Shi, Dongyuan (Nanyang Technological University)

Gan, Woon-Seng (Nanyang Technological University)

Software used in Production:

Python

Distributor:

DR-NTU (Data)

Access Authority:

Luo Zhengding

Depositor:

Luo Zhengding

Date of Deposit:

2023-03-16

Holdings Information:

https://doi.org/10.21979/N9/ETJWLU

Study Scope

Keywords:

Engineering, Engineering, Synthetic noise dataset

Abstract:

The synthetic noise dataset is divided into 3 subsets: 80,000 noise tracks for training, 2,000 noise tracks for validation, and remaining 2,000 noise tracks for testing. The synthetic noise tracks are generated by filtering white noise through various band-pass filters with randomly chosen center frequencies and bandwidths. Each noise track in the dataset has a 1-second duration with a sample rate of 16 kHz.

Kind of Data:

Dataset

Methodology and Processing

Sources Statement

Data Access

Other Study Description Materials

Related Publications

Citation

Identification Number:

10.1109/LSP.2022.3169428

Bibliographic Citation:

Luo, Z., Shi, D., & Gan, W. S. (2022). A Hybrid SFANC-FxNLMS Algorithm for Active Noise Control Based on Deep Learning. IEEE Signal Processing Letters, 29, 1102-1106.

Other Study-Related Materials

Label:

Synthesized_Dataset.zip

Notes:

application/zip