{"id":97906,"identifier":"N9/WPX1SE","persistentUrl":"https://doi.org/10.21979/N9/WPX1SE","protocol":"doi","authority":"10.21979","publisher":"DR-NTU (Data)","publicationDate":"2022-09-15","storageIdentifier":"file://10.21979/N9/WPX1SE","metadataLanguage":"undefined","datasetVersion":{"id":6126,"datasetId":97906,"datasetPersistentId":"doi:10.21979/N9/WPX1SE","storageIdentifier":"file://10.21979/N9/WPX1SE","versionNumber":1,"versionMinorNumber":0,"versionState":"RELEASED","UNF":"UNF:6:FSzozXS+M4Gpea19nZlmkw==","lastUpdateTime":"2022-09-19T04:18:05Z","releaseTime":"2022-09-15T02:52:30Z","createTime":"2022-09-15T02:49:54Z","license":{"name":"CC BY-NC 4.0","uri":"http://creativecommons.org/licenses/by-nc/4.0"},"fileAccessRequest":false,"metadataBlocks":{"citation":{"displayName":"Citation Metadata","name":"citation","fields":[{"typeName":"title","multiple":false,"typeClass":"primitive","value":"Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications"},{"typeName":"author","multiple":true,"typeClass":"compound","value":[{"authorName":{"typeName":"authorName","multiple":false,"typeClass":"primitive","value":"Tan, Yi Ji"},"authorAffiliation":{"typeName":"authorAffiliation","multiple":false,"typeClass":"primitive","value":"Nanyang Technological University"},"authorIdentifierScheme":{"typeName":"authorIdentifierScheme","multiple":false,"typeClass":"controlledVocabulary","value":"ORCID"},"authorIdentifier":{"typeName":"authorIdentifier","multiple":false,"typeClass":"primitive","value":"0000-0002-6454-6059"}}]},{"typeName":"datasetContact","multiple":true,"typeClass":"compound","value":[{"datasetContactName":{"typeName":"datasetContactName","multiple":false,"typeClass":"primitive","value":"Tan Yi Ji"},"datasetContactAffiliation":{"typeName":"datasetContactAffiliation","multiple":false,"typeClass":"primitive","value":"Nanyang Technological University"}}]},{"typeName":"dsDescription","multiple":true,"typeClass":"compound","value":[{"dsDescriptionValue":{"typeName":"dsDescriptionValue","multiple":false,"typeClass":"primitive","value":"MATLAB scripts and data for generating published figures."},"dsDescriptionDate":{"typeName":"dsDescriptionDate","multiple":false,"typeClass":"primitive","value":"2022-09-15"}}]},{"typeName":"subject","multiple":true,"typeClass":"controlledVocabulary","value":["Physics"]},{"typeName":"keyword","multiple":true,"typeClass":"compound","value":[{"keywordValue":{"typeName":"keywordValue","multiple":false,"typeClass":"primitive","value":"Deep Reinforcement Learning"}},{"keywordValue":{"typeName":"keywordValue","multiple":false,"typeClass":"primitive","value":"Terahertz Beamforming"}},{"keywordValue":{"typeName":"keywordValue","multiple":false,"typeClass":"primitive","value":"Terahertz Time-Domain Spectroscopy"}}]},{"typeName":"publication","multiple":true,"typeClass":"compound","value":[{"publicationCitation":{"typeName":"publicationCitation","multiple":false,"typeClass":"primitive","value":"Tan, Y. J., Zhu, C., Tan, T. C., Kumar, A., Wong, L. J., Chong, Y., & Singh, R. (2022). Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications. Optics Express, 30(15), 27763-27779."},"publicationIDType":{"typeName":"publicationIDType","multiple":false,"typeClass":"controlledVocabulary","value":"doi"},"publicationIDNumber":{"typeName":"publicationIDNumber","multiple":false,"typeClass":"primitive","value":"10.1364/OE.458823"},"publicationURL":{"typeName":"publicationURL","multiple":false,"typeClass":"primitive","value":"https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-15-27763&id=479126"}},{"publicationCitation":{"typeName":"publicationCitation","multiple":false,"typeClass":"primitive","value":"Tan, Y. J., Zhu, C., Tan, T. C., Kumar, A., Wong, L. J., Chong, Y. & Singh, R. (2022). Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications. Optics Express, 30(15), 27763-27779."},"publicationIDType":{"typeName":"publicationIDType","multiple":false,"typeClass":"controlledVocabulary","value":"handle"},"publicationIDNumber":{"typeName":"publicationIDNumber","multiple":false,"typeClass":"primitive","value":"10356/161695"},"publicationURL":{"typeName":"publicationURL","multiple":false,"typeClass":"primitive","value":"https://hdl.handle.net/10356/161695"}}]},{"typeName":"grantNumber","multiple":true,"typeClass":"compound","value":[{"grantNumberAgency":{"typeName":"grantNumberAgency","multiple":false,"typeClass":"primitive","value":"National Research Foundation (NRF)"},"grantNumberValue":{"typeName":"grantNumberValue","multiple":false,"typeClass":"primitive","value":"NRF-CRP23-2019-0005"}}]},{"typeName":"depositor","multiple":false,"typeClass":"primitive","value":"Tan Yi Ji"},{"typeName":"dateOfDeposit","multiple":false,"typeClass":"primitive","value":"2022-09-15"},{"typeName":"kindOfData","multiple":true,"typeClass":"primitive","value":["program source code","experimental data"]},{"typeName":"software","multiple":true,"typeClass":"compound","value":[{"softwareName":{"typeName":"softwareName","multiple":false,"typeClass":"primitive","value":"MATLAB"},"softwareVersion":{"typeName":"softwareVersion","multiple":false,"typeClass":"primitive","value":"R2021b"}}]}]}},"files":[{"description":"Required data for Figure 3 and 4.","label":"10 users.mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97930,"persistentId":"","pidURL":"","filename":"10 users.mat","contentType":"application/matlab-mat","filesize":451221,"description":"Required data for Figure 3 and 4.","storageIdentifier":"file://1833f04a7c9-1c7075d46bd0","rootDataFileId":-1,"md5":"236b0dad64b639f889d919b46ed08c3d","checksum":{"type":"MD5","value":"236b0dad64b639f889d919b46ed08c3d"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 2.","label":"3 users.mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97913,"persistentId":"","pidURL":"","filename":"3 users.mat","contentType":"application/matlab-mat","filesize":269640,"description":"Required data for Figure 2.","storageIdentifier":"file://1833f047477-87812c872e52","rootDataFileId":-1,"md5":"ddb73236f23c7c71494894454ac574e2","checksum":{"type":"MD5","value":"ddb73236f23c7c71494894454ac574e2"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 2.","label":"5 users.mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97912,"persistentId":"","pidURL":"","filename":"5 users.mat","contentType":"application/matlab-mat","filesize":265192,"description":"Required data for Figure 2.","storageIdentifier":"file://1833f0479ce-f5bc3152915a","rootDataFileId":-1,"md5":"fa9e5473da757f79e9fdcff45702d904","checksum":{"type":"MD5","value":"fa9e5473da757f79e9fdcff45702d904"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 3 and 4.","label":"6 users.mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97925,"persistentId":"","pidURL":"","filename":"6 users.mat","contentType":"application/matlab-mat","filesize":463528,"description":"Required data for Figure 3 and 4.","storageIdentifier":"file://1833f04a28a-771860db1d08","rootDataFileId":-1,"md5":"256ba6abb9c41d927397b2d045c43408","checksum":{"type":"MD5","value":"256ba6abb9c41d927397b2d045c43408"},"creationDate":"2022-09-15"}},{"description":"Matlab script: Neural network training for beamforming","label":"BeamformingNetwork2D.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97909,"persistentId":"","pidURL":"","filename":"BeamformingNetwork2D.m","contentType":"text/x-matlab","filesize":7244,"description":"Matlab script: Neural network training for beamforming","storageIdentifier":"file://1833f018a88-07ca29a03006","rootDataFileId":-1,"md5":"add30fa2f630af764d92abbddee1da86","checksum":{"type":"MD5","value":"add30fa2f630af764d92abbddee1da86"},"creationDate":"2022-09-15"}},{"description":"Matlab script: Neural network testing for beamforming","label":"BeamformingPerformance2D.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97935,"persistentId":"","pidURL":"","filename":"BeamformingPerformance2D.m","contentType":"text/x-matlab","filesize":5725,"description":"Matlab script: Neural network testing for beamforming","storageIdentifier":"file://1833f018c41-9f8de34b1467","rootDataFileId":-1,"md5":"6d8f221ff972c2a1ef8db01af9248647","checksum":{"type":"MD5","value":"6d8f221ff972c2a1ef8db01af9248647"},"creationDate":"2022-09-15"}},{"description":"Matlab script: User-defined clear function","label":"clr.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97928,"persistentId":"","pidURL":"","filename":"clr.m","contentType":"text/x-matlab","filesize":25,"description":"Matlab script: User-defined clear function","storageIdentifier":"file://1833f018df6-67ba63ed6e7d","rootDataFileId":-1,"md5":"f24a93b144b76baff4ebe9a6b4d47294","checksum":{"type":"MD5","value":"f24a93b144b76baff4ebe9a6b4d47294"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9.","label":"E2.mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97919,"persistentId":"","pidURL":"","filename":"E2.mat","contentType":"application/matlab-mat","filesize":184096,"description":"Required data for Figure 9.","storageIdentifier":"file://1833f05cc5e-7151a798b2c2","rootDataFileId":-1,"md5":"a9728b7fec63691f297e04aa1e35dfd4","checksum":{"type":"MD5","value":"a9728b7fec63691f297e04aa1e35dfd4"},"creationDate":"2022-09-15"}},{"description":"Matlab script for generating Figure 10.","label":"Figure_10.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97918,"persistentId":"","pidURL":"","filename":"Figure_10.m","contentType":"text/plain","filesize":3484,"description":"Matlab script for generating Figure 10.","storageIdentifier":"file://1833f062a8a-16777d029e8c","rootDataFileId":-1,"md5":"b8750396f80a5ac86f3d2e96ad64c65b","checksum":{"type":"MD5","value":"b8750396f80a5ac86f3d2e96ad64c65b"},"creationDate":"2022-09-15"}},{"description":"Matlab script for generating Figure 2.","label":"Figure_2.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97944,"persistentId":"","pidURL":"","filename":"Figure_2.m","contentType":"text/plain","filesize":2613,"description":"Matlab script for generating Figure 2.","storageIdentifier":"file://1833f046d4a-cce7113f3c93","rootDataFileId":-1,"md5":"54f242e4ffba6891af3cf94329c506cf","checksum":{"type":"MD5","value":"54f242e4ffba6891af3cf94329c506cf"},"creationDate":"2022-09-15"}},{"description":"Matlab script for generating Figure 3 and 4.","label":"Figure_3_and_4.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97931,"persistentId":"","pidURL":"","filename":"Figure_3_and_4.m","contentType":"text/plain","filesize":5134,"description":"Matlab script for generating Figure 3 and 4.","storageIdentifier":"file://1833f049c40-1c8cb76b5289","rootDataFileId":-1,"md5":"1bb4fb728637e838d1a69ba59d4485de","checksum":{"type":"MD5","value":"1bb4fb728637e838d1a69ba59d4485de"},"creationDate":"2022-09-15"}},{"description":"Matlab script for generating Figure 5 to 7.","label":"Figure_5_to_7.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97910,"persistentId":"","pidURL":"","filename":"Figure_5_to_7.m","contentType":"text/plain","filesize":3232,"description":"Matlab script for generating Figure 5 to 7.","storageIdentifier":"file://1833f04cbe1-cc87ae88e29c","rootDataFileId":-1,"md5":"a84b92b3341fd0c250fd572cc4d99108","checksum":{"type":"MD5","value":"a84b92b3341fd0c250fd572cc4d99108"},"creationDate":"2022-09-15"}},{"description":"Matlab script for generating Figure 8.","label":"Figure_8.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97908,"persistentId":"","pidURL":"","filename":"Figure_8.m","contentType":"text/plain","filesize":1517,"description":"Matlab script for generating Figure 8.","storageIdentifier":"file://1833f053cc4-acee99957d0d","rootDataFileId":-1,"md5":"cc944c9c657314f2cfe8221e151d49cc","checksum":{"type":"MD5","value":"cc944c9c657314f2cfe8221e151d49cc"},"creationDate":"2022-09-15"}},{"description":"Matlab script for generating Figure 9.","label":"Figure_9.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97938,"persistentId":"","pidURL":"","filename":"Figure_9.m","contentType":"text/plain","filesize":5969,"description":"Matlab script for generating Figure 9.","storageIdentifier":"file://1833f05c54f-cdcfdd56bc5c","rootDataFileId":-1,"md5":"df47dc484511ceaa67b7191d2de09554","checksum":{"type":"MD5","value":"df47dc484511ceaa67b7191d2de09554"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 5 to 7.","label":"Input intensity (random).mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97907,"persistentId":"","pidURL":"","filename":"Input intensity (random).mat","contentType":"application/matlab-mat","filesize":152814,"description":"Required data for Figure 5 to 7.","storageIdentifier":"file://1833f04feff-39a3d498fa67","rootDataFileId":-1,"md5":"b9d320807261fb038c16423d4ede5229","checksum":{"type":"MD5","value":"b9d320807261fb038c16423d4ede5229"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 5 to 7.","label":"Intensity error (random).mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97915,"persistentId":"","pidURL":"","filename":"Intensity error (random).mat","contentType":"application/matlab-mat","filesize":153096,"description":"Required data for Figure 5 to 7.","storageIdentifier":"file://1833f05046b-a54d53f35bf7","rootDataFileId":-1,"md5":"cfcf89bfb2d5379beea8af08e49c6ee8","checksum":{"type":"MD5","value":"cfcf89bfb2d5379beea8af08e49c6ee8"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 5 to 7.","label":"Intensity (linear).mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97914,"persistentId":"","pidURL":"","filename":"Intensity (linear).mat","contentType":"application/matlab-mat","filesize":120426,"description":"Required data for Figure 5 to 7.","storageIdentifier":"file://1833f05005b-efd62c75197a","rootDataFileId":-1,"md5":"89c8b03aa953e9ec1e901f0c5fb33a8e","checksum":{"type":"MD5","value":"89c8b03aa953e9ec1e901f0c5fb33a8e"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 5 to 7.","label":"Intensity (maximum).mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97926,"persistentId":"","pidURL":"","filename":"Intensity (maximum).mat","contentType":"application/matlab-mat","filesize":120426,"description":"Required data for Figure 5 to 7.","storageIdentifier":"file://1833f0501be-2bef2fc9f828","rootDataFileId":-1,"md5":"d94f8246522442054dda7e5f5b71e38a","checksum":{"type":"MD5","value":"d94f8246522442054dda7e5f5b71e38a"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 5 to 7.","label":"Intensity (single).mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97943,"persistentId":"","pidURL":"","filename":"Intensity (single).mat","contentType":"application/matlab-mat","filesize":116480,"description":"Required data for Figure 5 to 7.","storageIdentifier":"file://1833f050314-345a6cec7361","rootDataFileId":-1,"md5":"9ec091a44d0d13174561ac919d7b351b","checksum":{"type":"MD5","value":"9ec091a44d0d13174561ac919d7b351b"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9.","label":"INTENSITY.txt","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97921,"persistentId":"","pidURL":"","filename":"INTENSITY.txt","contentType":"text/plain","filesize":166563,"description":"Required data for Figure 9.","storageIdentifier":"file://1833f05e99e-575a47d6cac8","rootDataFileId":-1,"md5":"f02f2e16763e91e8e8e92a7d541e5e8c","checksum":{"type":"MD5","value":"f02f2e16763e91e8e8e92a7d541e5e8c"},"creationDate":"2022-09-15"}},{"description":"Matlab script: Objective function for training neural network","label":"modelGradients.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97941,"persistentId":"","pidURL":"","filename":"modelGradients.m","contentType":"text/x-matlab","filesize":879,"description":"Matlab script: Objective function for training neural network","storageIdentifier":"file://1833f018ec8-e12c22b0e40c","rootDataFileId":-1,"md5":"5d57f3fd09195e3776794b34d02a203b","checksum":{"type":"MD5","value":"5d57f3fd09195e3776794b34d02a203b"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 5 to 7.","label":"Output Intensity (maximum).mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97920,"persistentId":"","pidURL":"","filename":"Output Intensity (maximum).mat","contentType":"application/matlab-mat","filesize":152856,"description":"Required data for Figure 5 to 7.","storageIdentifier":"file://1833f0505c1-5908c0ba09bf","rootDataFileId":-1,"md5":"43150630eeb1bd55ae6896ef57121f11","checksum":{"type":"MD5","value":"43150630eeb1bd55ae6896ef57121f11"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 5 to 7.","label":"Output Intensity (random).mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97911,"persistentId":"","pidURL":"","filename":"Output Intensity (random).mat","contentType":"application/matlab-mat","filesize":153064,"description":"Required data for Figure 5 to 7.","storageIdentifier":"file://1833f050717-6f213bf1329a","rootDataFileId":-1,"md5":"d9af090601706a68b92990d310aab1bb","checksum":{"type":"MD5","value":"d9af090601706a68b92990d310aab1bb"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 5 to 7.","label":"Output Phase (maximum).mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97917,"persistentId":"","pidURL":"","filename":"Output Phase (maximum).mat","contentType":"application/matlab-mat","filesize":8679,"description":"Required data for Figure 5 to 7.","storageIdentifier":"file://1833f050880-c99d4a67fbc0","rootDataFileId":-1,"md5":"f40246ebe2001bb4703751cd86972d40","checksum":{"type":"MD5","value":"f40246ebe2001bb4703751cd86972d40"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 5 to 7.","label":"Output Phase (random).mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97937,"persistentId":"","pidURL":"","filename":"Output Phase (random).mat","contentType":"application/matlab-mat","filesize":8655,"description":"Required data for Figure 5 to 7.","storageIdentifier":"file://1833f0509d2-55033b733020","rootDataFileId":-1,"md5":"6637e750543cdd8db5cc3e2bce2f31f0","checksum":{"type":"MD5","value":"6637e750543cdd8db5cc3e2bce2f31f0"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 8.","label":"phase [f = 1 THz, p = 75 um, lz = 200 um].txt","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97940,"persistentId":"","pidURL":"","filename":"phase [f = 1 THz, p = 75 um, lz = 200 um].txt","contentType":"text/plain","filesize":73408,"description":"Required data for Figure 8.","storageIdentifier":"file://1833f057219-44670215ceb7","rootDataFileId":-1,"md5":"2d3b3db4d545915dd2c2a75cbf1a87f0","checksum":{"type":"MD5","value":"2d3b3db4d545915dd2c2a75cbf1a87f0"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9 and 10.","label":"phaseMN.txt","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97933,"persistentId":"","pidURL":"","filename":"phaseMN.txt","contentType":"text/plain","filesize":9994,"description":"Required data for Figure 9 and 10.","storageIdentifier":"file://1833f05ebaf-7396be48e6ee","rootDataFileId":-1,"md5":"da6964b94fd024dd97002166b2d1aabd","checksum":{"type":"MD5","value":"da6964b94fd024dd97002166b2d1aabd"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9.","label":"Power Spectrum.txt","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97945,"persistentId":"","pidURL":"","filename":"Power Spectrum.txt","contentType":"text/plain","filesize":27472,"description":"Required data for Figure 9.","storageIdentifier":"file://1833f05edd8-568afa067f57","rootDataFileId":-1,"md5":"33a7a349124a83922ecbfb353d3c7b20","checksum":{"type":"MD5","value":"33a7a349124a83922ecbfb353d3c7b20"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 8.","label":"Si [dir = +1, f = 1 THz, p = 75 um, lz = 200 um].mat","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97932,"persistentId":"","pidURL":"","filename":"Si [dir = +1, f = 1 THz, p = 75 um, lz = 200 um].mat","contentType":"application/matlab-mat","filesize":329648,"description":"Required data for Figure 8.","storageIdentifier":"file://1833f056eb1-4c60bbe59d28","rootDataFileId":-1,"md5":"65f897d8e37babc2f03e30047887ed8a","checksum":{"type":"MD5","value":"65f897d8e37babc2f03e30047887ed8a"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 8.","label":"Si - phase [dir = +1, f = 1 THz, p = 75 um, lz = 200 um].txt","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97936,"persistentId":"","pidURL":"","filename":"Si - phase [dir = +1, f = 1 THz, p = 75 um, lz = 200 um].txt","contentType":"text/plain","filesize":65592,"description":"Required data for Figure 8.","storageIdentifier":"file://1833f0573c7-9b902a57a192","rootDataFileId":-1,"md5":"3c6169c85e79f4019eb4940f04738588","checksum":{"type":"MD5","value":"3c6169c85e79f4019eb4940f04738588"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9.","label":"theta = 15, phi = -135.csv","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97916,"persistentId":"","pidURL":"","filename":"theta = 15, phi = -135.csv","contentType":"text/csv","filesize":1027856,"description":"Required data for Figure 9.","storageIdentifier":"file://1833f05dddc-dc96bd73000b","rootDataFileId":-1,"md5":"90a49dfc446e79cc32578e8350016143","checksum":{"type":"MD5","value":"90a49dfc446e79cc32578e8350016143"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9.","label":"theta = 20, phi = -10.tab","restricted":false,"version":3,"datasetVersionId":6126,"dataFile":{"id":97927,"persistentId":"","pidURL":"","filename":"theta = 20, phi = -10.tab","contentType":"text/tab-separated-values","filesize":1024850,"description":"Required data for Figure 9.","storageIdentifier":"file://1833f05e068-d21dd90deab1","originalFileFormat":"text/csv","originalFormatLabel":"Comma Separated Values","originalFileSize":1028204,"originalFileName":"theta = 20, phi = -10.csv","UNF":"UNF:6:EK30gJefUqwbv/jo/IQ9pA==","rootDataFileId":-1,"md5":"c13096d8a91a1e503090fb9be4047b6f","checksum":{"type":"MD5","value":"c13096d8a91a1e503090fb9be4047b6f"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9.","label":"theta = 25, phi = 50.tab","restricted":false,"version":3,"datasetVersionId":6126,"dataFile":{"id":97924,"persistentId":"","pidURL":"","filename":"theta = 25, phi = 50.tab","contentType":"text/tab-separated-values","filesize":1024354,"description":"Required data for Figure 9.","storageIdentifier":"file://1833f05e35d-181abe348131","originalFileFormat":"text/csv","originalFormatLabel":"Comma Separated Values","originalFileSize":1027722,"originalFileName":"theta = 25, phi = 50.csv","UNF":"UNF:6:S8colQsykhGUDAgWGPlQxw==","rootDataFileId":-1,"md5":"5774ecff1936a57fd8d8bf9b61dc99ea","checksum":{"type":"MD5","value":"5774ecff1936a57fd8d8bf9b61dc99ea"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9.","label":"theta = 25, phi = 95.csv","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97934,"persistentId":"","pidURL":"","filename":"theta = 25, phi = 95.csv","contentType":"text/csv","filesize":1027853,"description":"Required data for Figure 9.","storageIdentifier":"file://1833f05d886-a17b3376f4d1","rootDataFileId":-1,"md5":"a22c3ebb53f165681a2ce4e468c746f2","checksum":{"type":"MD5","value":"a22c3ebb53f165681a2ce4e468c746f2"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9.","label":"theta = 30, phi = 100.tab","restricted":false,"version":3,"datasetVersionId":6126,"dataFile":{"id":97939,"persistentId":"","pidURL":"","filename":"theta = 30, phi = 100.tab","contentType":"text/tab-separated-values","filesize":1024576,"description":"Required data for Figure 9.","storageIdentifier":"file://1833f05db21-101d22feb756","originalFileFormat":"text/csv","originalFormatLabel":"Comma Separated Values","originalFileSize":1027933,"originalFileName":"theta = 30, phi = 100.csv","UNF":"UNF:6:zAHyTQahbK0ZjrT0z9FVaA==","rootDataFileId":-1,"md5":"06422d1940ed16c02ab06e6024733382","checksum":{"type":"MD5","value":"06422d1940ed16c02ab06e6024733382"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 8.","label":"transmission [f = 1 THz, p = 75 um, lz = 200 um].txt","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97922,"persistentId":"","pidURL":"","filename":"transmission [f = 1 THz, p = 75 um, lz = 200 um].txt","contentType":"text/plain","filesize":70775,"description":"Required data for Figure 8.","storageIdentifier":"file://1833f05705d-cecb652b7b75","rootDataFileId":-1,"md5":"faa231c9fce53e679dfe828df02c76d4","checksum":{"type":"MD5","value":"faa231c9fce53e679dfe828df02c76d4"},"creationDate":"2022-09-15"}},{"description":"Matlab script: User-defined colormap","label":"twilight.m","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97929,"persistentId":"","pidURL":"","filename":"twilight.m","contentType":"text/x-matlab","filesize":715,"description":"Matlab script: User-defined colormap","storageIdentifier":"file://1833f018f94-4a72c927e6d6","rootDataFileId":-1,"md5":"f0482d5c5e70b619d1cc2a6c0fb903c4","checksum":{"type":"MD5","value":"f0482d5c5e70b619d1cc2a6c0fb903c4"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9 and 10.","label":"xN.txt","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97923,"persistentId":"","pidURL":"","filename":"xN.txt","contentType":"text/plain","filesize":335,"description":"Required data for Figure 9 and 10.","storageIdentifier":"file://1833f063638-80a9722298a0","rootDataFileId":-1,"md5":"1205cd83a47bff913e7a988d0561055a","checksum":{"type":"MD5","value":"1205cd83a47bff913e7a988d0561055a"},"creationDate":"2022-09-15"}},{"description":"Required data for Figure 9 and 10.","label":"yM.txt","restricted":false,"version":1,"datasetVersionId":6126,"dataFile":{"id":97942,"persistentId":"","pidURL":"","filename":"yM.txt","contentType":"text/plain","filesize":335,"description":"Required data for Figure 9 and 10.","storageIdentifier":"file://1833f0bd091-c501281b6b1f","rootDataFileId":-1,"md5":"1205cd83a47bff913e7a988d0561055a","checksum":{"type":"MD5","value":"1205cd83a47bff913e7a988d0561055a"},"creationDate":"2022-09-15"}}],"citation":"Tan, Yi Ji, 2022, \"Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications\", https://doi.org/10.21979/N9/WPX1SE, DR-NTU (Data), V1, UNF:6:FSzozXS+M4Gpea19nZlmkw== [fileUNF]"}}