Related Data for: Hybrid Near- and Far-Field THz UM-MIMO Channel Estimation: A Sparsifying Matrix Learning-Aided Bayesian Approach (doi:10.21979/N9/HOX79X)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

(external link) (external link)

Document Description

Citation

Title:

Related Data for: Hybrid Near- and Far-Field THz UM-MIMO Channel Estimation: A Sparsifying Matrix Learning-Aided Bayesian Approach

Identification Number:

doi:10.21979/N9/HOX79X

Distributor:

DR-NTU (Data)

Date of Distribution:

2025-02-28

Version:

1

Bibliographic Citation:

Li, Yuanjian; Madhukumar, A. S., 2025, "Related Data for: Hybrid Near- and Far-Field THz UM-MIMO Channel Estimation: A Sparsifying Matrix Learning-Aided Bayesian Approach", https://doi.org/10.21979/N9/HOX79X, DR-NTU (Data), V1

Study Description

Citation

Title:

Related Data for: Hybrid Near- and Far-Field THz UM-MIMO Channel Estimation: A Sparsifying Matrix Learning-Aided Bayesian Approach

Identification Number:

doi:10.21979/N9/HOX79X

Authoring Entity:

Li, Yuanjian (Nanyang Technological University)

Madhukumar, A. S. (Nanyang Technological University)

Software used in Production:

Python

Grant Number:

Competitive Research Programme (Grant Number: NRF-CRP23-2019-0005)

Grant Number:

Future Communications Research & Development Programme (Grant Number: FCP-NTU-RG-2022-014)

Distributor:

DR-NTU (Data)

Access Authority:

Li, Yuanjian

Access Authority:

Li, Yuanjian

Depositor:

Li, Yuanjian

Date of Deposit:

2025-02-27

Holdings Information:

https://doi.org/10.21979/N9/HOX79X

Study Scope

Keywords:

Engineering, Engineering, Terahertz communications, Ultra-massive multiple-input multiple-output systems, Channel estimation, Compressed sensing, Dictionary learning

Abstract:

Python source code associated with the publication titled "Hybrid Near- and Far-Field THz UM-MIMO Channel Estimation: A Sparsifying Matrix Learning-Aided Bayesian Approach". These codes can be used to produce simulation figures in this publication.

Kind of Data:

Source code Python

Methodology and Processing

Sources Statement

Data Access

Other Study Description Materials

Related Publications

Citation

Identification Number:

10.1109/TWC.2024.3514141

Bibliographic Citation:

Li, Y., & Madhukumar, A. S. (2024). Hybrid Near-and Far-Field THz UM-MIMO Channel Estimation: A Sparsifying Matrix Learning-Aided Bayesian Approach. IEEE Transactions on Wireless Communications.

Citation

Identification Number:

10356/181807

Bibliographic Citation:

Li, Y. & Madhukumar, A. S. (2024). Hybrid near- and far-field THz UM-MIMO channel estimation: a sparsifying matrix learning-aided Bayesian approach. IEEE Transactions On Wireless Communications.

Other Study-Related Materials

Label:

BL_ChannelEstimation.py

Notes:

text/x-python

Other Study-Related Materials

Label:

dicLearning.py

Notes:

text/x-python

Other Study-Related Materials

Label:

Environment.py

Notes:

text/x-python

Other Study-Related Materials

Label:

main_BLCE_NMSE_vs_pilotLength.py

Notes:

text/x-python

Other Study-Related Materials

Label:

main_BLCE_NMSE_vs_SNR.py

Notes:

text/x-python

Other Study-Related Materials

Label:

main_unifiedConfig.py

Notes:

text/x-python

Other Study-Related Materials

Label:

utils.py

Notes:

text/x-python